10.7	N 189	50 Page 50 Pag		(5)	-		-		300 VI 1000
Reg. No. :				800	100			20	
Security of the second second		27.00	0.000	en Same	A SAUSE -	1050	Sec. 5	0.00	3500 8

Question Paper Code: 31319

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Seventh Semester

Computer Science and Engineering

CS 2401/CS 71/10144 CS 702 — COMPUTER GRAPHICS

(Common to Information Technology)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. Digitize a line from (10, 12) to (15, 15) on a raster screen using Bresenhams straight line algorithm.
- 2. List the different types of text clipping methods available.
- 3. Give the general expression of Bezier Bernstein polynomial.
- 4. Give the single-point perspective projection transformation matrix when projectors are placed on the z-axis.
- List any four real-time animation techniques.
- 6. How are mouse data sent to an OpenG1 application?
- 7. Which shading method is faster and easier to calculate? Why?
- 8. What are the types of reflection of incident light?
- 9. Where does the ray r(t) = (4, 1, 3) + (-3, -5, -3)t hit the generic plane?
- 10. How objects are modelled using constructive solid geometry technique?

PART B - (5 × 16 = 80 marks)

		20	1 ALC D — (0 × 10 – 00 marks)	
11,	(a)	(i)	Calculate the pixel location approximating the first octant of circle having centre at (4, 5) and radius 4 units using Bresenham algorithm. (8	9
		(ii)	Discuss in brief: Antialiasing techniques. (8	5)
100	8:		\mathbf{Or}	
	(b)	(i) .	A polygon has four vertices located at A(20, 10) B(60, 10) C(60, 30 D(20, 30). Calculate the vertices after applying a transformation matrix to double the size of polygon with point A located on the same place.	n e
18		(ii)	The reflection along the line $y = x$ is equivalent to the reflection along the X axis followed by counter clockwise rotation by \emptyset degrees. Find the value of \emptyset .	y
12.	(a)	(i)	A cube has its vertices located at A(0, 0, 10), B(10, 0, 10) C(10, 10, 10), D (0, 10,10), E(0, 0, 0), F(10, 0, 0), G(10, 10, 0) H(0, 10, 0). The Y axis is vertical and Z axis is oriented towards the viewer. The cube is being viewed from point (0, 20.80). Calculate), ė
			the perspective view of the cube on XY plane. (8	
		(ii)	Discuss on the various visualization techniques in detail. (8	5)
82	i.e		Or .	832
	(b)	(i)	Calculate the new coordinates of a block rotated about x axis by an angle of = 30 degrees. The original coordinates of the block are given relative to the global xyz axis system.	
	Ħ	*	A(1, 1, 2) B(2, 1, 2) C(2, 2, 2) D(1, 2, 2) $\mathbb{E}(1, 1, 1)$ F(2, 1, 1) G(2, 2, 1 H(1, 2, 1).	
		(ii)	Discuss on Area subdivision method of hidden surface identification algorithm. (8	
13.	(a)	Disc	uss on the various colour models in detail. (16	3)
2	9	E 27	Or	
98	(b)		uss on the methods used in OPENGL for handling a window and als	0
57.3	*	write	e a simple program to display a window on the screen. (16	j)
14.	(a)	Disc	uss on the process of adding textures to faces of real objects. (16	3)
			0-	

(16)

(b)

characteristics and types.

Compare Flat shading and Smooth shading with respect to their

15.	(a)	(i)	Discuss the Ray tracing process with an example.							
		(ii)	Explain how refraction of li- view of the three dimensions	ght in a al ob jec	a tra t.	nspare	ent obje	ct change	es the	
:: ::			Or	2 1 2		ř	200	8	18 ¹⁷⁷ - 1	
19	(b)	Writ	te short notes on :			66 E6			1	
35. 16		(i)	Mandelbrot sets.						(5)	
â		(ii <u>)</u>	Fractal geometry.	, ¹⁸	5 %	35			(5)	
10.00	E .	(iii)	Boolean operations on object	S.		ā		E 8	(6)	