

Reg. No.		oly	6)	354			
-reg	Mill Co	20000					

Question Paper Code: 57234

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Computer Science and Engineering

CS 6201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- Find the Octal equivalent of the hexadecimal number DC.BA.
- 2. What is meant by multilevel gates network?
- 3. Define Combinational circuits.
- Design the combinational circuit with 3 inputs and 1 output. The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.
- 5. State the excitation table of JK-Flip Flop.
- 6. A seven bit Hamming code is received as 1111110. What is the correct code?
- 7. What is the minimum number of flip flops needed to build a counter of modulus 8?
- 8. What is lockout? How it is avoided?
- Define the critical rate and non critical rate.
- 10. Draw the wave forms showing static 1 hazard?

www.rejinpaul.com Get All Study Material From Rejinpaul.com

$PART - B (5 \times 16 = 80 Marks)$

6	13	Rep. No.					
11. (a)	(a)	Reduce the expression using Quine McCluskey method.					
	$F(x_1, x_2, x_3, x_4, x_5) = \sum m(0, 2, 4, 5, 6, 7, 8, 10, 14, 17, 18, 21, 29, 31) +$						
		F1/// 20 20	16)				
		OR	10)				
	(b)	Determine the MSP form of the Switching function F (a, b, c, d) = $(0, 2, 4, 6, 8)$ +	16)				
12.	(a)	Design a full adder with inputs x , y , z and two outputs S and C . The circuits performs $x + y + z$, z is the input carry, C is the output carry and S is the Sum. (1)	16)				
	(b)	Design a logic circuit that accepts a 4-bit Grey code and converts it into 4-bit binary code.	16)				
13.	(a)	Implement the following Boolean function with a 4×1 multiplexer and external gates. Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D these values are obtained by expressing F as a function of C and D for each of the four cases when AB = 00, 01, 10 and 11. These functions may have to be implemented with external gates. $F(A, B, C, D) = \sum_{i=0}^{\infty} (1, 2, 5, 7, 8, 10, 11, 13, 15)$.	16)				
	(b)	Draw a next sketch showing implementation of 7 = sh'd's + s'h's' a + ha + ds					
	(0)	Draw a neat sketch showing implementation of $Z_1 = ab'd'e + a'b'c'e + bc + de$, $Z_2 = a'c'e$, $Z_3 = bc + de + c'd'e + bd$ and $Z_4 = a'c'e + ce$ using a 5*8*4 PLA. (1	16)				
14.	(a)	Design a binary counter using T flip-flops to count in the following sequences: (i) 000, 001, 010, 011, 100, 101, 111, 000 (ii) 000, 100, 111, 010, 011, 000 (1)	(6)				
		binary value of the inputs is less than 3. The so ut is 0 otherwise					
	(b)		(6)				
15.	(a)	Design an asynchronous sequential circuit with 2 inputs X and Y and with one output Z Wherever Y is 1, input X is transferred to Z. When Y is 0; the output does not change for any change in X. Use SR latch for implementation of the					

OR

circuit.

(b) Discuss in detail the procedure for reducing the flow table with an example. (16)

(16) What is lockout? How it is avoided?