
Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 1

Unit – IV

PHP

When working with data values in PHP, we need some convenient way to store these values so that we

can easily access them and make reference to them whenever necessary. This is where PHP variables

come in. It is often useful to think of variables as computer memory locations where data is to be stored.

When declaring a variable in PHP it is assigned a name that can be used to reference it in other locations

in the PHP script. The value of the variable can be accessed, the value can be changed, and the type of

variable can be altered all by referencing the name assigned at variable creation time.

Naming and Creating a Variable in PHP

Before learning how to declare a variable in PHP it is first important to understand some rules about

variable names (also known as variable naming conventions). All PHP variable names must be pre-fixed

with a $. It is this prefix which informs the PHP pre-processor that it is dealing with a variable. The first

character of the name must be either a letter or an underscore (_). The remaining characters must

comprise only of letters, numbers or underscores. All other characters are deemed to be invalid for use in

a variable name. Let's look at some valid and invalid PHP variable names:

$_myName // valid

$myName // valid

$__myvar // valid

$myVar21 // valid

$_1Big // invalid - underscore must be followed by a letter

$1Big // invalid - must begin with a letter or underscore

$_er-t // invalid contains non alphanumeric character (-)

Variable names in PHP are case-sensitive. This means that PHP considers $_myVariable to be a

completely different variable to one that is named ''$_myvariable.

Assigning a Value to a PHP Variable

Values are assigned to variables using the PHP assignment operator. The assignment operator is

represented by the = sign. To assign a value to a variable therefore, the variable name is placed on the

left of the expression, followed by the assignment operator. The value to be assigned is then placed to

the right of the assignment operator. Finally the line, as with all PHP code statements, is terminated with

a semi-colon (;).

Let's begin by assigning the word "Circle" to a variable named myShape:

$myShape = "Circle";

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 2

We have now declared a variable with the name myShape and assigned a string value to it of "Circe". We

can similarly declare a variable to contain an integer value:

$numberOfShapes = 6;

The above assignment creates a variable named numberOfShapes and assigns it a numeric value of 6.

Once a variable has been created, the value assigned to that variable can be changed at any time using

the same assignment operator approach:

<?php

$numberOfShapes = 6; // Set initial values

$myShape = "Circle";

$numberOfShapes = 7; // Change the initial values to new values

$myShape = "Square";

?>

Accessing PHP Variable Values

Now that we have learned how to create a variable and assign an initial value to it we now need to look

at how to access the value currently assigned to a variable. In practice, accessing a variable is as simple

as referencing the name it was given when it was created.

For example, if we want to display the value which we assigned to our numberOfShapes variable we can

simply reference it in our echo command:

<?php

echo "The number of shapes is $numberOfShapes.";

?>

This will cause the following output to appear in the browser:

The number of shapes is 6.

Similarly we can display the value of the myShape variable:

<?php

echo "$myShape is the value of the current shape.";

?>

The examples we have used for accessing variable values are straightforward because we have always

had a space character after the variable name. The question arises as to what should be done if we need

to put other characters immediately after the variable name. For example:

<?php

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 3

echo "The Circle is the $numberOfShapesth shape";

?>

What we are looking for in this scenario is output as follows:

The Circle is the 6th shape.

Unfortunately PHP will see the th on the end of the $numberOfShapes variable name as being part of the

name. It will then try to output the value of a variable called $numberOfShapesth, which does not exist.

This results in nothing being displayed for this variable:

The Circle is the shape.

Fortunately we can get around this issue by placing braces ({ and }) around the variable name to

distinguish the name from any other trailing characters:

<?php

echo "The Circle is the ${numberOfShapes}th shape";

?>

To give us the desired output:

The Circle is the 6th shape.

Internal (built-in) functions

PHP comes standard with many functions and constructs. There are also functions that require specific

PHP extensions compiled in, otherwise fatal "undefined function" errors will appear. For example, to use

image functions such as imagecreatetruecolor(), PHP must be compiled with GD support. Or, to use

mysql_connect(), PHP must be compiled with MySQL support. There are many core functions that are

included in every version of PHP, such as the string and variable functions. A call to phpinfo() or

get_loaded_extensions() will show which extensions are loaded into PHP. Also note that many

extensions are enabled by default and that the PHP manual is split up by extension. See the

configuration, installation, and individual extension chapters, for information on how to set up PHP.

Reading and understanding a function's prototype is explained within the manual section titled how to

read a function definition. It's important to realize what a function returns or if a function works directly

on a passed in value. For example, str_replace() will return the modified string while usort() works on

the actual passed in variable itself. Each manual page also has specific information for each function like

information on function parameters, behavior changes, return values for both success and failure, and

availability information. Knowing these important (yet often subtle) differences is crucial for writing

correct PHP code.

http://php.net/manual/en/ref.image.php
http://php.net/manual/en/function.imagecreatetruecolor.php
http://php.net/manual/en/function.mysql-connect.php
http://php.net/manual/en/ref.mysql.php
http://php.net/manual/en/ref.strings.php
http://php.net/manual/en/ref.var.php
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/function.get-loaded-extensions.php
http://php.net/manual/en/configuration.php
http://php.net/manual/en/install.php
http://php.net/manual/en/about.prototypes.php
http://php.net/manual/en/about.prototypes.php
http://php.net/manual/en/about.prototypes.php
http://php.net/manual/en/function.str-replace.php
http://php.net/manual/en/function.usort.php

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 4

PHP User Defined Functions

Besides the built-in PHP functions, we can create our own functions.

A function is a block of statements that can be used repeatedly in a program.

A function will not execute immediately when a page loads.

A function will be executed by a call to the function.

Create a User Defined Function in PHP

A user defined function declaration starts with the word "function":

Syntax

function functionName() {

 code to be executed;

}

In the example below, we create a function named "writeMsg()". The opening curly brace ({) indicates

the beginning of the function code and the closing curly brace (}) indicates the end of the function. The

function outputs "Hello world!". To call the function, just write its name:

Example

<?php

function writeMsg() {

 echo "Hello world!";

}

writeMsg(); // call the function

?>

PHP Function Arguments

Information can be passed to functions through arguments. An argument is just like a variable.

Arguments are specified after the function name, inside the parentheses. You can add as many arguments

as you want, just seperate them with a comma.

The following example has a function with one argument ($fname). When the familyName() function is

called, we also pass along a name (e.g. Jani), and the name is used inside the function, which outputs

several different first names, but an equal last name:

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 5

Example

<?php

function familyName($fname) {

 echo "$fname Refsnes.
";

}

familyName("Jani");

familyName("Hege");

familyName("Stale");

familyName("Kai Jim");

familyName("Borge");

?>

Example

<?php

function familyName($fname, $year) {

 echo "$fname Refsnes. Born in $year
";

}

familyName("Hege", "1975");

familyName("Stale", "1978");

familyName("Kai Jim", "1983");

?>

PHP Default Argument Value

The following example shows how to use a default parameter. If we call the function setHeight() without

arguments it takes the default value as argument:

Example

<?php

function setHeight($minheight = 50) {

 echo "The height is : $minheight
";

}

setHeight(350);

setHeight(); // will use the default value of 50

setHeight(135);

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 6

setHeight(80);

?>

PHP Functions - Returning values

To let a function return a value, use the return statement:

Example

<?php

function sum($x, $y) {

 $z = $x + $y;

 return $z;

}

echo "5 + 10 = " . sum(5, 10) . "
";

echo "7 + 13 = " . sum(7, 13) . "
";

echo "2 + 4 = " . sum(2, 4);

?>

Connecting to a Database

PHP 5 and later can work with a MySQL database using:

 MySQLi extension (the "i" stands for improved)

 PDO (PHP Data Objects)

Should I Use MySQLi or PDO?

If you need a short answer, it would be "Whatever you like".

Both MySQLi and PDO have their advantages:

PDO will work on 12 different database systems, where as MySQLi will only work with MySQL

databases.

So, if you have to switch your project to use another database, PDO makes the process easy. You only

have to change the connection string and a few queries. With MySQLi, you will need to rewrite the

entire code - queries included.

Both are object-oriented, but MySQLi also offers a procedural API.

Both support Prepared Statements. Prepared Statements protect from SQL injection, and are very

important for web application security.

MySQL Examples in Both MySQLi and PDO Syntax

In this, and in the following chapters we demonstrate three ways of working with PHP and MySQL:

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 7

 MySQLi (object-oriented)

 MySQLi (procedural)

 PDO

MySQLi Installation

For Linux and Windows: The MySQLi extension is automatically installed in most cases, when php5

mysql package is installed.

For installation details, go to: http://php.net/manual/en/mysqli.installation.php

PDO Installation

For installation details, go to: http://php.net/manual/en/pdo.installation.php

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to connect to the server:

Example (MySQLi Object-Oriented)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

echo "Connected successfully";

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

http://php.net/manual/en/mysqli.installation.php
http://php.net/manual/en/pdo.installation.php

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 8

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

echo "Connected successfully";

?>

Example (PDO)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

try {

 $conn = new PDO("mysql:host=$servername;dbname=myDB", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 echo "Connected successfully";

 }

catch(PDOException $e)

 {

 echo "Connection failed: " . $e->getMessage();

 }

?>

Close the Connection

The connection will be closed automatically when the script ends. To close the connection before, use

the following:

Example (MySQLi Object-Oriented)

$conn->close();

Example (MySQLi Procedural)

mysqli_close($conn);

Example (PDO)

$conn = null;

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 9

Using Cookies

A cookie is often used to identify a user. A cookie is a small file that the server embeds on the user's

computer. Each time the same computer requests a page with a browser, it will send the cookie too. With

PHP, you can both create and retrieve cookie values.

Create Cookies With PHP

A cookie is created with the setcookie() function.

Syntax

setcookie(name, value, expire, path, domain, secure, httponly);

Only the name parameter is required. All other parameters are optional.

PHP Create/Retrieve a Cookie

The following example creates a cookie named "user" with the value "John Doe". The cookie will expire

after 30 days (86400 * 30). The "/" means that the cookie is available in entire website (otherwise, select

the directory you prefer).

We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also use the

isset() function to find out if the cookie is set:

Example

<?php

$cookie_name = "user";

$cookie_value = "John Doe";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";

} else {

 echo "Cookie '" . $cookie_name . "' is set!
";

 echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 10

</body>

</html>

Modify a Cookie Value

To modify a cookie, just set (again) the cookie using the setcookie() function:

Example

<?php

$cookie_name = "user";

$cookie_value = "Alex Porter";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/");

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";

} else {

 echo "Cookie '" . $cookie_name . "' is set!
";

 echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

</body>

</html>

Delete a Cookie

To delete a cookie, use the setcookie() function with an expiration date in the past:

Example

<?php

// set the expiration date to one hour ago

setcookie("user", "", time() - 3600);

?>

<html>

<body>

<?php

echo "Cookie 'user' is deleted.";

?>

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 11

</body>

</html>

Check if Cookies are Enabled

The following example creates a small script that checks whether cookies are enabled. First, try to create

a test cookie with the setcookie() function, then count the $_COOKIE array variable:

Example

<?php

setcookie("test_cookie", "test", time() + 3600, '/');

?>

<html>

<body>

<?php

if(count($_COOKIE) > 0) {

 echo "Cookies are enabled.";

} else {

 echo "Cookies are disabled.";

}

?>

</body>

</html>

Regular Expressions

Regular expressions are nothing more than a sequence or pattern of characters itself. They provide the

foundation for pattern-matching functionality.

Using regular expression you can search a particular string inside a another string, you can replace one

string by another string and you can split a string into many chunks.

PHP offers functions specific to two sets of regular expression functions, each corresponding to a

certain type of regular expression. You can use any of them based on your comfort.

 POSIX Regular Expressions

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 12

 PERL Style Regular Expressions

POSIX Regular Expressions

The structure of a POSIX regular expression is not dissimilar to that of a typical arithmetic expression:

various elements (operators) are combined to form more complex expressions.

The simplest regular expression is one that matches a single character, such as g, inside strings such as

g, haggle, or bag.

Lets give explaination for few concepts being used in POSIX regular expression. After that we will

introduce you wih regular expression related functions.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions. They are used to

find a range of characters.

Expression Description

[0-9] It matches any decimal digit from 0 through 9.

[a-z] It matches any character from lowercase a through lowercase z.

[A-Z] It matches any character from uppercase A through uppercase Z.

[a-Z] It matches any character from lowercase a through uppercase Z.

The ranges shown above are general; you could also use the range [0-3] to match any decimal digit

ranging from 0 through 3, or the range [b-v] to match any lowercase character ranging from b through v.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted by a

special character. Each pecial character having a specific connotation. The +, *, ?, {int. range}, and $

flags all follow a character sequence.

Expression Description

p+ It matches any string containing at least one p.

p* It matches any string containing zero or more p's.

p? It matches any string containing zero or more p's. This is just an alternative way to use p*.

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 13

p{N} It matches any string containing a sequence of N p's

p{2,3} It matches any string containing a sequence of two or three p's.

p{2, } It matches any string containing a sequence of at least two p's.

p$ It matches any string with p at the end of it.

^p It matches any string with p at the beginning of it.

Examples

Following examples will clear your concepts about matching chracters.

Expression Description

[^a-zA-Z] It matches any string not containing any of the characters ranging from a through z and A

through Z.

p.p It matches any string containing p, followed by any character, in turn followed by another p.

^.{2}$ It matches any string containing exactly two characters.

(.*) It matches any string enclosed within and .

p(hp)* It matches any string containing a p followed by zero or more instances of the sequence hp.

Predefined Character Ranges

For your programming convenience several predefined character ranges, also known as character

classes, are available. Character classes specify an entire range of characters, for example, the alphabet

or an integer set:

Expression Description

[[:alpha:]] It matches any string containing alphabetic characters aA through zZ.

[[:digit:]] It matches any string containing numerical digits 0 through 9.

[[:alnum:]] It matches any string containing alphanumeric characters aA through zZ and 0 through 9.

[[:space:]] It matches any string containing a space.

PHP's Regexp POSIX Functions

PHP currently offers seven functions for searching strings using POSIX-style regular expressions:

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 14

Function Description

ereg()
The ereg() function searches a string specified by string for a string specified by pattern,

returning true if the pattern is found, and false otherwise.

ereg_replace()
The ereg_replace() function searches for string specified by pattern and replaces pattern

with replacement if found.

eregi()
The eregi() function searches throughout a string specified by pattern for a string specified

by string. The search is not case sensitive.

eregi_replace()
The eregi_replace() function operates exactly like ereg_replace(), except that the search

for pattern in string is not case sensitive.

split()
The split() function will divide a string into various elements, the boundaries of each

element based on the occurrence of pattern in string.

spliti()
The spliti() function operates exactly in the same manner as its sibling split(), except that

it is not case sensitive.

sql_regcase()
The sql_regcase() function can be thought of as a utility function, converting each

character in the input parameter string into a bracketed expression containing two

characters.

PERL Style Regular Expressions

Perl-style regular expressions are similar to their POSIX counterparts. The POSIX syntax can be used

almost interchangeably with the Perl-style regular expression functions. In fact, you can use any of the

quantifiers introduced in the previous POSIX section.

Lets give explaination for few concepts being used in PERL regular expressions. After that we will

introduce you wih regular expression related functions.

Metacharacters

A metacharacter is simply an alphabetical character preceded by a backslash that acts to give the

combination a special meaning.

For instance, you can search for large money sums using the '\d' metacharacter:/([\d]+)000/, Here \d will

search for any string of numerical character.

Following is the list of metacharacters which can be used in PERL Style Regular Expressions.

Character Description

. a single character

http://www.tutorialspoint.com/php/php_ereg.htm
http://www.tutorialspoint.com/php/php_ereg_replace.htm
http://www.tutorialspoint.com/php/php_eregi.htm
http://www.tutorialspoint.com/php/php_eregi_replace.htm
http://www.tutorialspoint.com/php/php_split.htm
http://www.tutorialspoint.com/php/php_spliti.htm
http://www.tutorialspoint.com/php/php_sql_regcase.htm

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 15

\s a whitespace character (space, tab, newline)

\S non-whitespace character

\d a digit (0-9)

\D a non-digit

\w a word character (a-z, A-Z, 0-9, _)

\W a non-word character

[aeiou] matches a single character in the given set

[^aeiou] matches a single character outside the given set

(foo|bar|baz) matches any of the alternatives specified

Modifiers

Several modifiers are available that can make your work with regexps much easier, like case sensitivity,

searching in multiple lines etc.

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage

 return characters, the ^ and $ operators will now

 match against a newline boundary, instead of a

 string boundary

o Evaluates the expression only once

s Allows use of . to match a newline character

x Allows you to use white space in the expression for clarity

g Globally finds all matches

cg Allows a search to continue even after a global match fails

PHP's Regexp PERL Compatible Functions

PHP offers following functions for searching strings using Perl-compatible regular expressions:

Function Description

preg_match()
The preg_match() function searches string for pattern, returning true if pattern exists,

and false otherwise.

preg_match_all()
The preg_match_all() function matches all occurrences of pattern in string.

preg_replace()
The preg_replace() function operates just like ereg_replace(), except that regular

expressions can be used in the pattern and replacement input parameters.

http://www.tutorialspoint.com/php/php_preg_match.htm
http://www.tutorialspoint.com/php/php_preg_match_all.htm
http://www.tutorialspoint.com/php/php_preg_replace.htm

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 16

preg_split()
The preg_split() function operates exactly like split(), except that regular expressions

are accepted as input parameters for pattern.

preg_grep()
The preg_grep() function searches all elements of input_array, returning all elements

matching the regexp pattern.

preg_ quote()
Quote regular expression characters

XML

XML is a markup language that looks a lot like HTML. An XML document is plain text and contains

tags delimited by < and >.There are two big differences between XML and HTML:

 XML doesn't define a specific set of tags you must use.

 XML is extremely picky about document structure.

XML gives you a lot more freedom than HTML. HTML has a certain set of tags: the <a> tags

surround a link, the <p> startsa paragraph and so on. An XML document, however, can use any tags you

want. Put <rating></rating> tags around a movie rating, >height></height> tags around someone's

height. Thus XML gives you option to device your own tags.

XML is very strict when it comes to document structure. HTML lets you play fast and loose with some

opening and closing tags. BUt this is not the case with XML.

HTML list that's not valid XML

Braised Sea Cucumber

Baked Giblets with Salt

Abalone with Marrow and Duck Feet

This is not a valid XML document because there are no closing tags to match up with the three

opening tags. Every opened tag in an XML document must be closed.

HTML list that is valid XML

Braised Sea Cucumber

Baked Giblets with Salt

Abalone with Marrow and Duck Feet

http://www.tutorialspoint.com/php/php_preg_split.htm
http://www.tutorialspoint.com/php/php_preg_grep.htm
http://www.tutorialspoint.com/php/php_preg_quote.htm

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 17

Parsing an XML Document

PHP 5's new SimpleXML module makes parsing an XML document, well, simple. It turns an XML

document into an object that provides structured access to the XML.

To create a SimpleXML object from an XML document stored in a string, pass the string

to simplexml_load_string(). It returns a SimpleXML object.

Example

Try out following example:

<?php

$channel =<<<_XML_

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

</channel>

XML;

$xml = simplexml_load_string($channel);

print "The $xml->title channel is available at $xml->link. ";

print "The description is \"$xml->description\"";

?>

It will produce following result:

The What's For Dinner channel is available at http://menu.example.com/. The description is "Choose

what to eat tonight."

NOTE: You can use function simplexml_load_file(filename) if you have XML content in a file.

For a complete detail of XML parsing function check PHP Function Reference.

Generating an XML Document

http://www.tutorialspoint.com/php/php_function_reference.htm

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 18

SimpleXML is good for parsing existing XML documents, but you can't use it to create a new one from

scratch.

The easiest way to generate an XML document is to build a PHP array whose structure mirrors that of

the XML document and then to iterate through the array, printing each element with appropriate

formatting.

Example

Try out following example:

<?php

$channel = array('title' => "What's For Dinner",

 'link' => 'http://menu.example.com/',

 'description' => 'Choose what to eat tonight.');

print "<channel>\n";

foreach ($channel as $element => $content) {

 print " <$element>";

 print htmlentities($content);

 print "</$element>\n";

}

print "</channel>";

?>

It will produce following result:

<channel>

<title>What's For Dinner</title>

<link>http://menu.example.com/</link>

<description>Choose what to eat tonight.</description>

</channel></html>

DOM

A DOM (Document Object Model) defines a standard way for accessing and manipulating documents.

The XML DOM defines a standard way for accessing and manipulating XML documents.

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 19

The XML DOM views an XML document as a tree-structure.

All elements can be accessed through the DOM tree. Their content (text and attributes) can be modified or

deleted, and new elements can be created. The elements, their text, and their attributes are all known as

nodes.

You can learn more about the XML DOM in our XML DOM tutorial.

The HTML DOM

The HTML DOM defines a standard way for accessing and manipulating HTML documents.

All HTML elements can be accessed through the HTML DOM.

You can learn more about the HTML DOM in our JavaScript tutorial.

Load an XML File - Cross-browser Example

The following example parses an XML document ("note.xml") into an XML DOM object and then

extracts some info from it with a JavaScript:

Example

<html>

<body>

<h1>W3Schools Internal Note</h1>

<div>

To:

From:

Message:

</div>

<script>

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.open("GET","note.xml",false);

xmlhttp.send();

http://www.w3schools.com/dom/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/xml/note.xml

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 20

xmlDoc=xmlhttp.responseXML;

document.getElementById("to").innerHTML=

xmlDoc.getElementsByTagName("to")[0].childNodes[0].nodeValue;

document.getElementById("from").innerHTML=

xmlDoc.getElementsByTagName("from")[0].childNodes[0].nodeValue;

document.getElementById("message").innerHTML=

xmlDoc.getElementsByTagName("body")[0].childNodes[0].nodeValue;

</script>

</body>

</html>

Load an XML String - Cross-browser Example

The following example parses an XML string into an XML DOM object and then extracts some info from

it with a JavaScript:

Example

<html>

<body>

<h1>W3Schools Internal Note</h1>

<div>

To:

From:

Message:

</div>

<script>

txt="<note>";

txt=txt+"<to>Tove</to>";

txt=txt+"<from>Jani</from>";

txt=txt+"<heading>Reminder</heading>";

txt=txt+"<body>Don't forget me this weekend!</body>";

txt=txt+"</note>";

if (window.DOMParser)

 {

 parser=new DOMParser();

 xmlDoc=parser.parseFromString(txt,"text/xml");

 }

else // Internet Explorer

 {

 xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 21

 xmlDoc.async=false;

 xmlDoc.loadXML(txt);

 }

document.getElementById("to").innerHTML=

xmlDoc.getElementsByTagName("to")[0].childNodes[0].nodeValue;

document.getElementById("from").innerHTML=

xmlDoc.getElementsByTagName("from")[0].childNodes[0].nodeValue;

document.getElementById("message").innerHTML=

xmlDoc.getElementsByTagName("body")[0].childNodes[0].nodeValue;

</script>

</body>

</html>

Document Type Definition

An XML document with correct syntax is called "Well Formed".

An XML document validated against a DTD is "Well Formed" and "Valid".

Valid XML Documents

A "Valid" XML document is a "Well Formed" XML document, which also conforms to the rules of a

DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The DOCTYPE declaration, in the example above, is a reference to an external DTD file. The content of

the file is shown in the paragraph below.

XML DTD

The purpose of a DTD is to define the structure of an XML document. It defines the structure with a list

of legal elements:

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 22

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

The DTD above is interpreted like this:

 !DOCTYPE note defines that the root element of the document is note

 !ELEMENT note defines that the note element must contain four elements: "to, from, heading,

body"

 !ELEMENT to defines the to element to be of type "#PCDATA"

 !ELEMENT from defines the from element to be of type "#PCDATA"

 !ELEMENT heading defines the heading element to be of type "#PCDATA"

 !ELEMENT body defines the body element to be of type "#PCDATA"

Using DTD for Entity Declaration

A doctype declaration can also be used to define special characters and character strings, used in the

document:

Example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE note [

<!ENTITY nbsp " ">

<!ENTITY writer "Writer: Donald Duck.">

<!ENTITY copyright "Copyright: W3Schools.">

]>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

<footer>&writer; ©right;</footer>

</note>

Why Use a DTD?

With a DTD, independent groups of people can agree on a standard for interchanging data.

With a DTD, you can verify that the data you receive from the outside world is valid.

Displaying XML with XSLT

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 23

XSLT (eXtensible Stylesheet Language Transformations) is the recommended style sheet language for

XML.

XSLT is far more sophisticated than CSS. With XSLT you can add/remove elements and attributes to or

from the output file. You can also rearrange and sort elements, perform tests and make decisions about

which elements to hide and display, and a lot more.

XSLT uses XPath to find information in an XML document.

XSLT Example

We will use the following XML document:

<?xml version="1.0" encoding="UTF-8"?>

<breakfast_menu>

<food>

<name>Belgian Waffles</name>

<price>$5.95</price>

<description>Two of our famous Belgian Waffles with plenty of real maple syrup</description>

<calories>650</calories>

</food>

<food>

<name>Strawberry Belgian Waffles</name>

<price>$7.95</price>

<description>Light Belgian waffles covered with strawberries and whipped cream</description>

<calories>900</calories>

</food>

<food>

<name>Berry-Berry Belgian Waffles</name>

<price>$8.95</price>

<description>Light Belgian waffles covered with an assortment of fresh berries and whipped

cream</description>

<calories>900</calories>

</food>

<food>

<name>French Toast</name>

<price>$4.50</price>

<description>Thick slices made from our homemade sourdough bread</description>

<calories>600</calories>

</food>

<food>

Srividya College of Engineering and Technology, Virudhunagar Course material –Lecture Notes

CS6501 Internet Programming – Unit-IV Page 24

<name>Homestyle Breakfast</name>

<price>$6.95</price>

<description>Two eggs, bacon or sausage, toast, and our ever-popular hash browns</description>

<calories>950</calories>

</food>

</breakfast_menu>

Use XSLT to transform XML into HTML, before it is displayed in a browser:

Example XSLT Stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<body style="font-family:Arial;font-size:12pt;background-color:#EEEEEE">

<xsl:for-each select="breakfast_menu/food">

 <div style="background-color:teal;color:white;padding:4px">

 <xsl:value-of select="name"/> -

 <xsl:value-of select="price"/>

 </div>

 <div style="margin-left:20px;margin-bottom:1em;font-size:10pt">

 <p>

 <xsl:value-of select="description"/>

 (<xsl:value-of select="calories"/> calories per serving)

 </p>

 </div>

</xsl:for-each>

</body>

</html>

